Control of multiphoton and avalanche ionization using an ultraviolet- infrared pulse train in femtosecond laser micro-/nano-machining of fused silica

نویسندگان

  • Xiaoming Yu
  • Qiumei Bian
  • Zenghu Chang
  • P. B. Corkum
  • Shuting Lei
چکیده

We report on the experimental results of microand nanostructures fabricated on the surface of fused silica by a train of two femtosecond laser pulses, a tightly focused 266 nm (ultraviolet, UV) pulse followed by a loosely focused 800 nm (infrared, IR) pulse. By controlling the fluence of each pulse below the damage threshold, microand nanostructures are fabricated using the combined beams. The resulting damage size is defined by the UV pulse, and a reduction of UV damage threshold is observed when the two pulses are within ~ 1 ps delay. The effects of IR pulse duration on the UV damage threshold and shapes are investigated. These results suggest that the UV pulse generates seed electrons through multiphoton absorption and the IR pulse utilizes these electrons to cause damage by avalanche process. A single rate equation model based on electron density can be used to explain these results. It is further demonstrated that structures with dimensions of 124 nm can be fabricated on the surface of fused silica using 0.5 NA objective. This provides a possible route to XUV (or even shorter wavelength) laser nano-machining with reduced damage threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond laser nanomachining initiated by ultraviolet multiphoton ionization.

We report on the experimental results of 300 nm features generated on fused silica using a near-infrared (IR) femtosecond laser pulse initiated by an ultraviolet (UV) pulse. With both pulses at a short (~60 fs) delay, the damage threshold of the UV pulse is only 10% of its normal value. Considerable reduction of UV damage threshold is observed when two pulses are at ± 1.3 ps delay. The damage f...

متن کامل

Femtosecond micro- and nano-machining of materials for microfluidic applications

Ultrafast laser micromachining is a promising candidate for microand nano-fabrication technology. Due to the high precision of femtosecond ablation, laser-machined features can be added to devices prototyped by lithography. To accomplish that, parametric studies of laser interrogation of materials of interest are necessary. We present femtosecond laser ablation studies of glass, PDMS, fused sil...

متن کامل

Field dependent avalanche ionization rates in dielectrics.

From the pulse length dependence of the absorption of intense ultrashort laser pulses focused inside fused silica, we reveal the role field-assisted collisional ionization plays in the multiphoton ionization process. This constitutes a cold avalanche ionization mechanism that persists at pulse lengths considered too short for a traditional avalanche.

متن کامل

Femtosecond laser absorption in fused silica: Numerical and experimental investigation

Single pulse transmissivity and reflectivity of fused silica irradiated by tightly focused 90 fs laser pulses at a center wavelength of 800 nm are numerically and experimentally investigated to study the role of nonlinear photoionization and avalanche ionization processes in free electron generation. The laser beam inside fused silica is modeled with a 2+1 -dimensional propagation equation whic...

متن کامل

Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014